High field properties of geometrically frustrated magnets

نویسنده

  • Hirokazu Tsunetsugu
چکیده

Above the saturation field, geometrically frustrated quantum antiferromagnets have dispersionless low-energy branches of excitations corresponding to localized spin-flip modes. Transition into a partially magnetized state occurs via condensation of an infinite number of degrees of freedom. The ground state below the phase transition is a magnon crystal, which breaks only translational symmetry and preserves spin-rotations about the field direction. We give a detailed review of recent works on physics of such phase transitions and present further theoretical developments. Specifically, the low-energy degrees of freedom of a spin-1/2 kagomé antiferromagnet are mapped to a hard hexagon gas on a triangular lattice. Such a mapping allows to obtain a quantitative description of the magnetothermodynamics of a quantum kagomé antiferromagnet from the exact solution for a hard hexagon gas. In particular, we find the exact critical behavior at the transition into a magnon crystal state, the universal value of the entropy at the saturation field, and the position of peaks in temperatureand field-dependence of the specific heat. Analogous mapping is presented for the sawtooth chain, which is mapped onto a model of classical hard dimers on a chain. The finite macroscopic entropies of geometrically frustrated magnets at the saturation field lead to a large magnetocaloric effect.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

1 4 Ju n 20 05 1 High field properties of geometrically frustrated magnets

Above the saturation field, geometrically frustrated quantum antiferromagnets have dispersionless low-energy branches of excitations corresponding to localized spin-flip modes. Transition into a partially magnetized state occurs via condensation of an infinite number of degrees of freedom. The ground state below the phase transition is a magnon crystal, which breaks only translational symmetry ...

متن کامل

Exotic phases in geometrically frustrated triangular Ising magnets

We report a systematic study of both quantum and classical geometrically frustrated Ising models with competing ordering mechanism. The ordering comes in the classical case from a coupling of two-dimensional (2D) layers and in the quantum model from the quantum dynamics induced by a transverse field. We develop a microscopic derivation of the Landau–Ginzburg–Wilson (LGW) Hamiltonian for these m...

متن کامل

Dy2Ti2O7 spin ice: a test case for emergent clusters in a frustrated magnet.

Dy2Ti2O7 is a geometrically frustrated magnetic material with a strongly correlated spin ice regime that extends from 1 K down to as low as 60 mK. The diffuse elastic neutron scattering intensities in the spin ice regime can be remarkably well described by a phenomenological model of weakly interacting hexagonal spin clusters, as invoked in other geometrically frustrated magnets. We present a h...

متن کامل

Two dimensional frustrated magnets in high magnetic field

Frustrated magnets in high magnetic field have a long history of offering beautiful surprises to the patient investigator. Here we present the results of extensive classical Monte Carlo simulations of a variety of models of two dimensional magnets in magnetic field, together with complementary spin wave analysis. Striking results include (i) a massively enhanced magnetocaloric effect in antifer...

متن کامل

Chiral-like critical behavior in the antiferromagnet cobalt glycerolate.

Critical exponents closely matching those of the N=2 chiral universality class have been obtained for the layered magnetic system cobalt glycerolate using muon spin relaxation. This class was originally introduced to represent geometrically frustrated triangular stacked-layer XY magnets with chiral noncollinear spin structures. Since the present magnetic system is a canted XY system without geo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005